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Abstract Plug-and-play (PnP) denoising is a popular iterative framework
for solving imaging inverse problems using off-the-shelf image denoisers. Their
empirical success has motivated a line of research that seeks to understand the
convergence of PnP iterates under various assumptions on the denoiser. While
a significant amount of research has gone into establishing the convergence
of the PnP iteration for different regularity conditions on the denoisers, not
much is known about the asymptotic properties of the converged solution as
the noise level in the measurement tends to zero, i.e., whether PnP methods
are provably convergent regularization schemes under reasonable assumptions
on the denoiser. This paper serves two purposes: first, we provide an overview
of the classical regularization theory in inverse problems and survey a few
notable recent data-driven methods that are provably convergent regularization
schemes. We then continue to discuss PnP algorithms and their established
convergence guarantees. Subsequently, we consider PnP algorithms with lin-
ear denoisers and propose a novel spectral filtering technique to control the
strength of regularization arising from the denoiser. Further, by relating the
implicit regularization of the denoiser to an explicit regularization functional,
we rigorously show that PnP with linear denoisers leads to a convergent reg-
ularization scheme. More specifically, we prove that in the limit as the noise
vanishes, the PnP reconstruction converges to the minimizer of a regularization
potential subject to the solution satisfying the noiseless operator equation. The
theoretical analysis is corroborated by numerical experiments for the classical
inverse problem of tomographic image reconstruction.
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1 Introduction

Inverse problems deal with the estimation of an unknown model parameter
x∗ ∈ X from its noisy and indirect measurement yδ ∈ Y given by

yδ = Ax∗ + e. (1)

We consider the case where X and Y are (potentially infinite dimensional)
separable Hilbert spaces and A : X → Y is a bounded linear operator. X and
Y are endowed with inner products ⟨·, ·⟩X and ⟨·, ·⟩Y , inducing the norms ∥ ·∥X

and ∥ · ∥Y , respectively. The measurement noise level is bounded by δ, i.e.,
∥e∥Y ≤ δ. The clean measurement is denoted by y0.

The inverse problem in (1) is considered ill-posed in the sense of Hadamard,
if either injectivity or surjectivity of the forward operator, or stability of the
solution map is violated. For instance, if A is a compact operator with an
infinite-dimensional range, then surjectivity and stability are not satisfied. This
is, for example, the case for the ray transform operator that underlies many
applications in medical imaging, such as computed tomography (CT) and
positron emission tomography (PET) [32,33]. The study of inverse problems
usually assumes ill-posedness, as we will also do in the following.

In order to address ill-posedness, one needs to introduce a general concept
for stable and unique solvability for an inverse problem of the form (1). Due
to the aforementioned ill-posedness, we can not guarantee to recover the true
solution x∗ for all measurements and hence we first need the concept of a
generalized solution. A common approach is to search for solutions that are
closest to the measured data with respect to a suitable data discrepancy
term f : Y × Y → R+, such as the (squared) distance in the norm, i.e.,
f(Ax, yδ) = ∥Ax − yδ∥2

Y . Then we search for x̃ ∈ X such that

f(Ax̃, yδ) ≤ f(Ax, yδ) for all x ∈ X. (2)

(2) implies that x̃ is closest to the measured data with respect to f , which
deals with the violation of surjectivity by disregarding components of yδ in
the co-kernel of A. Furthermore, if A has a non-trivial null space, then x̃ is
not unique. To obtain a unique solution, one can define the minimum norm
solution as

x† = arg min
x∈X

{∥x∥X : x minimizes f(Ax, yδ)}. (3)

The element x† can now be considered a desirable generalized solution to
(1). When f and ∥ · ∥X are given by the squared L2-norm, we call x† the
least-squares minimum-norm solution and can define a mapping A† : Y → X,
such that x† = A†yδ. In fact, the mapping A† defines what is referred to as the
Moore-Penrose pseudo-inverse. Unfortunately, if the operator A is compact,
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then A† will be unbounded and as such does not take care of the stability
problem in the presence of noise in the data. This is where the concept of
regularization becomes important, as we will discuss next.

In order to deal with the stability issue, regularization theory considers
specifically designed solution maps. Such a solution map R(·; λ) : Y → X,
also called a reconstruction operator, is expressed as a parametric map that
produces an estimate of x∗ given yδ. Here, the parameter λ depends on the
noise level δ, and we denote this explicitly by the mapping δ → λ(δ). In this
paper, we are specifically interested in the notion of convergent regularization
which can be understood as convergence of the reconstruction operator when
the noise level δ tends to zero. More specifically, we want that when the noise
level δ → 0, then λ(δ) → λ0 ≥ 0, and the reconstruction operator R(yδ; λ)
converges to a generalized solution of the noiseless operator equation

Ax = y0. (4)

In the following, we will first review classical approaches to regularization
in Section 2 and why inverse problems necessitate a generalized notion of
solvability. We will then continue to discuss how this classical approach can
be combined with modern data-driven methods. In particular, we will devote
special attention to the so-called plug-and-play (PnP) approaches in Section 3,
which have been shown to yield excellent empirical results for imaging inverse
problems. These methods utilize state-of-the-art denoisers, model- or data-
driven, to replace the proximal operators within iterative proximal splitting
algorithms for solving an underlying variational minimization problem for
reconstruction. We will subsequently provide an analysis in Section 4 of how
PnP approaches can in fact provide a convergent regularization method in the
classical sense, in particular, with linear denoisers.

2 Regularization for inverse problems and data-driven methods

Regularization theory has been a rich and successful field in inverse problems
for several decades. The primary motivation is to formulate a well-posed and
stable inversion procedure that converges provably to a solution of the noiseless
operator equation (4). The emergence of data-driven methods has given the field
of inverse problems a new direction: by using large quantities of data we can
significantly improve reconstruction results. However, the underlying question
of a convergent regularization remains: does the obtained reconstruction solve
the underlying operator equation?

Indeed, there exist a few methods that are provably convergent regulariza-
tion methods, we refer to [30] for a survey. In the following, we will give a short
overview of the regularization theory and existing data-driven approaches that
are provably convergent regularization methods in this context.
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2.1 Classical regularization theory

Stable solutions to inverse problems need a way to handle varying noise levels.
For this purpose, the concept of regularization has proven highly useful. Roughly,
regularization can be understood as a convergence requirement to a unique
solution, e.g., the minimum norm solution x†, where convergence depends
on the noise level δ. That is, formally we consider the previously discussed
reconstruction operator Rλ := R(·, λ), which provides a parameterized family of
continuous operators Rλ : Y → X. The parameter λ depends on the noise level
δ > 0, where ∥yδ − y0∥ ≤ δ and y0 := Ax∗ denotes noise-free data. We say that
the family of reconstruction operators is a convergent regularization method
if there exists a parameter choice rule δ 7→ λ(δ, yδ) such that reconstructions
xδ := Rλ(δ,yδ)(yδ) converge to the solution x† := A†y0 given by the pseudo-
inverse as noise vanishes, in the sense that

lim sup
δ→0

∥∥xδ − x†∥∥
X

= 0 as lim sup
δ→0

{λ(δ, yδ)} = 0. (5)

In other words, we have point-wise convergence of the reconstruction operators
to the pseudo-inverse, i.e., Rλ(δ,yδ)(yδ) → A†y0 as δ → 0. We refer interested
readers to [15] for a detailed discussion. This is, of course, quite restrictive
and only considers convergence to the least-squares minimum-norm solution.
Nevertheless, this can already be used as a useful tool to design learned
regularization methods, i.e., learned reconstruction approaches that formally
satisfy the above convergence criteria, as we will discuss in the following.

2.1.1 Direct regularization

Motivated by the convergence to the pseudo-inverse solution, one can obtain
a regularization method by mimicking the construction of the pseudo-inverse.
In finite dimensions, this can be achieved by the singular value decomposition
(SVD) A = USV ⊤ of the forward operator. The pseudo-inverse can then be
simply obtained by A† = V S†U⊤, where S† is the transposed singular value
matrix with inverted singular values. A regularization method is now obtained
by filtering the singular values with a noise-dependent filter function, or a noise
level-dependent truncation.

Similarly, direct reconstruction methods that apply a regularized inverse of
the forward operator can be shown to be convergent regularization methods.
The most prominent example of such methods is the filtered back-projection
(FBP) for X-ray CT, which is, in fact, still relevant in clinical practice. Here,
the filtering operation removes high-frequency components in Fourier space
to regularize the reconstructions. If the filtering is interpreted as a noise-
dependent mollifier, one obtains the general class of approximate inverse [42]
with convergence as noise vanishes.

A popular approach in data-driven methods is to formulate a reconstruction
operator as composition of a regularized reconstruction operator Rλ : Y → X
with a data-driven component Cθ : X → X. That is, the reconstruction operator
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is parameterized as R(θ,λ) := Cθ ◦ Rλ, where the data driven component Cθ is
designed to improve the reconstruction by removing noise or undersampling
artefacts, usually given by a deep convolutional neural network (CNN) [22, 24].
These approaches are also popularly referred to as post-processing methods.

Such one-step post-processing approaches are especially popular due to
their simplicity, as Cθ can be efficiently trained when supervised pairs of high
and low-quality reconstructions are available. Unfortunately, there are very few
results on reconstruction guarantees for such methods. Specifically, the problem
formulation as a composition of a regularized reconstruction followed by the
data-driven component causes the reconstruction to often violate the so-called
data-consistency criterion. That is, even if the data-fidelity f(

(
A ◦ Rλ

)
(yδ), yδ)

is small, it does not necessarily imply a small value of f
((

A ◦ Cθ ◦ Rλ

)
(yδ), yδ

)
corresponding to the output of the post-processing network Cθ. Thus, such
schemes do not satisfy the convergence of the data fidelity and hence fail to be
a convergent regularization strategy.

Nevertheless, as proposed in [43], this approach can be reformulated by
constructing the post-processing network as Cθ = id +

(
id −A†A

)
Qθ, where

Qθ is a Lipschitz-continuous Deep Neural Network (DNN) and id denotes the
identity operator on X. Here,

(
id −A†A

)
is the projection operator onto the

null-space of A and hence the operator Cθ (referred to as null-space network)
always satisfies

(
A ◦ Cθ ◦ Rλ

)
(yδ) =

(
A ◦ Rλ

)
(yδ), ensuring that the output

of Cθ explains the observed data. More importantly, the null-space network
maintains the regularizing properties of the reconstruction method Rλ and
hence provides a convergent regularization scheme [43] in the sense of direct
regularization. See [8] for a recent extension of null-space networks to non-linear
inverse problems.

2.2 Variational regularization

The classical regularization theory, which defines convergent regularization by
convergence to the pseudo-inverse solution as defined in (5) limits possible
solutions. Therefore, one can consider more general variational approaches to
inverse problems, which have been particularly popular due to their flexibility
in incorporating prior knowledge and dealing with varying noise distributions.
In the variational regularization framework, solutions are computed by min-
imizing a composite objective consisting of the data-consistency term and a
regularization term. In particular, the solutions are given by

R(yδ; λ) ∈ arg min
x∈X

f(Ax, yδ) + gλ(x). (6)

The loss functional f : Y ×Y → R+ measures data fidelity and is not restricted
anymore to be the squared L2-norm. The regularization functional gλ : X → R
encodes prior belief about the ground-truth x∗ and effectively restricts the null
space of A. In the general case, λ can be a parameter of the functional, and more
commonly, a simple weighting parameter to balance between the two terms of
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(a) ground-truth (b) gλ(x) = λ ∥x∥2
2

(c) gλ(x) = λ ∥∇x∥2
2 (d) gλ(x) = λ ∥∇x∥1

Fig. 1: Sparse-view CT reconstruction with different regularizers. The noisy sinogram is
generated by first computing parallel-beam projections along 64 equally-spaced angular
positions of the source, with 365 lines per position, and then by adding white Gaussian
noise. The regularization parameter λ is chosen to be λ = 0.1 in (b) and λ = 10−4 in (c)
and (d). This experiment demonstrates that the convergence of the regularization scheme is
not particularly indicative of the quality of the reconstruction and underscores the need to
learn a data-adaptive regularizer for enhancing the reconstruction quality.

the composite objective in (6) (i.e., gλ(x) = λg(x), where g is the regularizer).
The choice of a suitable regularizer gλ is governed by the need to balance two
important factors: desirable analytical features and the encoded prior belief.
For instance, an analytically favorable choice is given by the squared L2-norm,
which, in combination with a squared L2-norm for the data fidelity, provides a
closed-form solution. Unfortunately, the obtained solutions corresponding to
this choice of the regularizer will be smooth, which may not be suitable for many
imaging applications. Consequently, more advanced sparsity-promoting priors
have been favored, most commonly the L1-norm for sparse signals and total
variation (TV) for sparse gradients, i.e., piece-wise constant functions. These
regularizers are non-differentiable and hence need more advanced non-smooth
optimization techniques to compute a minimizer [7], but they typically lead to
a better reconstruction than the simple squared L2-norm-based regularization.
See Figure 1 for a comparison of a few handcrafted regularizers in the context
of sparse-view CT reconstruction.



Convergent regularization and linear plug-and-play denoisers 7

Notably, the role of the two terms in (6) is conceptually similar to the general
formulation in (3) of a minimum-norm solution. Nevertheless, the variational
formulation provides more flexibility and also necessitates a broader concept of
regularization. This is because we can not always guarantee convergence to the
minimum-norm solution, but we have to consider convergence with respect to
the chosen regularization functional gλ [41].

We can then formulate a regularization method in the framework of varia-
tional regularization as follows: let us first denote xλ ∈ X to be a minimizer to
the objective in (6) for a given λ with data yδ ∈ Y and noise level ∥yδ−y0∥Y < δ.
Similarly, as before, we assume that there is a corresponding parameter choice
rule δ 7→ λ(δ, yδ) such that λ → λ0 as δ → 0. The variational model defined
by (6) is then said to converge to a g-minimizing solution if xλ(δ,yδ) → x̂ as
δ → 0. Here, x̂ ∈ X solves the variational model that corresponds to (6) with
noise-free data y0 ∈ Y , i.e.,

x̂ ∈ arg min
x∈X

gλ0(x) subject to y0 = Ax∗ and where λ0 := lim
δ→0

λ(δ, yδ). (7)

The primary differences to the classical formulation here are, that the minimizer
of the regularizing functional g is not necessarily unique and the regularization
parameter is not required to converge to 0.

Let us remark to this end, that it is desirable to formulate a regularizer that
has small values for the desired images, i.e., it penalizes undesired solutions but
is also analytically or computationally tractable. It is important to note at this
point that different regularizers g, which provide a convergent regularization,
will still produce very different reconstruction results as illustrated in Figure 1,
as not all choices of g are a good representation of the desired ground-truth
image. Here, learned regularizers have proven very successful, as the data itself
can now be used to represent the regularizer and hence naturally offer a good
representation of the desired features. Depending on the choice of representation,
analysis of the learned regularizer may become more involved. In the following,
we will discuss several choices for learned data-driven regularizers and how
these can be used within the realm of variational regularization.

2.3 Learning a regularizer

The idea to learn a regularizer from data, rather than the classical approach
of modeling it from first principles as outlined above, has appeared in the
literature in various forms. We outline here a few such approaches, ranging
from relatively older yet widely popular ideas like dictionary learning to the
more recent approaches to learning regularizers using deep neural networks.

2.3.1 Learning sparsity-promoting dictionaries

We start with the concept of dictionary learning, which nicely illustrates how
data can be used to learn a representation of the desired images. Here, we
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will use the concept of sparsity, which has long been important for modeling
prior knowledge of solutions, to regularize inverse problems. Assuming that the
reconstruction possesses a sparse representation in a given dictionary D, one
can develop sparse recovery strategies, associated computational approaches,
and error estimates for the reconstruction. Instead of working with a given
dictionary, the key idea is to learn a dictionary either a-priori or jointly with
the reconstruction. Notably, almost all work on dictionary learning in sparse
models has been carried out in the context of denoising, i.e., with A = id.

Learning the dictionary separately to solve the reconstruction problem is
usually done using a sparsity assumption on the representation given by the
dictionary. Let LX : X × X → R be a given loss function (e.g. the L2- or
L1-norm). Further, let x1, . . . , xN ∈ X be the given unsupervised training
data, D = {ϕi} ⊂ X a dictionary, and the synthesis operator E∗

D : Ξ → X
acting on the encoder space Ξ given as E∗

D(ξ) =
∑

i ξiϕi for ξ ∈ Ξ. One
approach in dictionary learning is based on the idea of finding a dictionary
that approximates the training data in the given loss function with the sparsest
possible coefficients, by solving

(D̂, ξ̂i) ∈ arg min
ξi∈Ξ,D⊂X

N∑
i=1

LX(xi, E∗
D(ξi)), such that ∥ξi∥0 ≤ s, for 1 ≤ i ≤ N, (8)

where s is a given sparsity level. Alternatively, one can formulate the opti-
mality criterion by looking for a dictionary that maximizes the sparsity of
the dictionary representation while enforcing a constraint on the precision in
which the synthesis operation approximates, i.e., by seeking a dictionary such
that LX(xi, E∗

D(ξi)) ≤ ε for i = 1, . . . , N , while maximizing sparsity. A unified
formulation is given by the unconstrained problem

(D̂, ξ̂i) = arg min
ξi∈Ξ,D⊂X

N∑
i=1

[LX(xi, E∗
D(ξi)) + θ∥ξi∥0]. (9)

Both (8) and (9) are posed in terms of the L0-norm and are NP-hard problems.
This suggests the use of convex relaxation, by replacing ∥ξi∥0 with ∥ξi∥1 in
(9). This relaxation turns (9) into a bi-convex problem (convex in each variable
when the others are kept fixed) subject to usual choices for LX , and one
can apply alternating minimization approaches for obtaining an approximate
solution. Seminal work on sparse dictionary learning includes the K-SVD
approach [4], geometric multi-resolution analysis (GMRA) [5], and online
dictionary learning [27]. See also [39] and references therein for a thorough
discussion on sparse dictionary learning approaches.

While dictionary learning in the context of sparse coding has been very
popular and successful, there are still several issues with it related to the locality
of learned structures and the computational effort needed, for instance when
sparse coding is performed over a large number of images or image patches.
Consequently, a computationally feasible approach is needed that introduces
further structure and invariances in the dictionary (e.g., shift-invariance),
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which makes each dictionary atom ϕi dependent on the whole image instead of
just individual patches. In this context, convolutional dictionaries have been
introduced. Here, the dictionary atoms are given by convolution kernels that act
on signal features via convolution and hence provide computationally feasible
shift-invariant dictionaries, where the atoms depend on the entire signal/image.

Convolutional dictionary learning is formulated as follows. Given unsuper-
vised training data x1, . . . , xN ∈ X and a loss function LX : X × X → X, one
seeks to solve

arg min
ϕi,ξj,i∈X

{
N∑

j=1
LX

(
xj ,

∑
i

ξj,i ∗ ϕi

)
+ λ

N∑
j=1

∑
i

∥ξj,i∥1

}
, (10)

where ∥ϕi∥2 = 1. The above can be solved using an ADMM-type scheme,
similar to what is done for the L2-loss in [16]. There are various extensions of
convolutional dictionary learning, for instance, multi-layer variants [44].

The dictionary can also be learned jointly with the reconstruction, by
formulating a joint optimization problem. An example of such an approach is
the adaptive dictionary-based statistical iterative reconstruction (ADSIR) [48],
and its variants [12,46]. A joint problem could be formulated as:

min
x∈X,ξi∈Ξ,D

{f(Ax, y) + gλ(x, ξ1, . . . , ξN ,D)}, (11)

where

gλ(x, ξ1, . . . , ξN ,D) :=
N∑

j=1

[
LX(xi, E∗

D(ξi)) + λ∥ξj∥p
p

]
, (12)

while E∗
D : Ξ → X being the synthesis operator associated with the dictionary

D. A convergent regularization could now be obtained under suitable conditions
on gλ following the variational regularization framework.

Finally, a formulation in infinite dimensional spaces is studied in [10],
proposing a convex variational model for joint reconstruction and dictionary
learning, that applies to inverse problems and allows to establish existence and
stability guarantees for the reconstruction.

2.3.2 Bilevel learning

Starting from variational regularization methods where the reconstruction
operator Rλ : Y → X is defined as the solution map for (6), one can formulate
a generic setup for learning selected components of (6) utilizing supervised
training data and a suitable loss function LX : X × X → R. This setup can
be tailored towards learning the regularization functional gλ [35, 36], the data
fidelity term f , or even an appropriate component in the forward operator A,
e.g., in blind image deconvolution [20]. Notably, the joint dictionary learning
problem (11) can also be formulated as a bilevel learning problem.
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First, we generalize the regularizer gλ consisting of a single regularization
parameter λ to a set of parameters θ (vector-valued). Subsequently, we define
the reconstruction operator as

Rθ(y) := arg min
x∈X

{f(Ax, y) + gθ(x)} for y ∈ Y . (13)

Given paired training data (xi, yi) ∈ X × Y that are i.i.d. samples of the
(X × Y )-valued random variable (x, y) ∼ πjoint, we can formulate the following
bilevel learning problem:

θ̂ ∈ arg min
θ

E(x,y)∼πjoint [LX(Rθ(y), x)], where

Rθ(y) := arg min
x∈X

{f(A(x), y) + gθ(x)}.
(14)

Note that θ̂ here is a Bayes estimator. However, the true joint distribution
πjoint is typically unknown and is replaced by its empirical counterpart given by
the training data, in which case θ̂ corresponds to empirical risk minimization.

In the bilevel optimization literature, as in the optimization literature as
a whole, there are two main and mostly distinct approaches. In the discrete
approach that first discretizes the problem (13) and subsequently optimizes
its parameters. In this way, optimality conditions and their well-posedness
are derived in finite dimensions. Alternatively, R and its parameter θ in (14)
are optimized in the continuum (i.e., appropriate infinite-dimensional function
spaces) and then discretized. It should be noted that the resulting problems
present several difficulties due to the frequent non-smoothness of the lower-level
problem (think of TV regularization), which, in general, makes it impossible to
verify Karush–Kuhn–Tucker constraint qualification conditions. This issue has
led to the development of alternative analytical approaches in order to obtain
first-order necessary optimality conditions [13,19].

2.3.3 Adversarial regularization

Another notable alternative approach to include a learned regularization in the
reconstruction process is to learn an explicit regularization term in (6) and solve
the variational problem subsequently. One such option is to learn adversarial
regularizers as first proposed in [26] and further developed in [29]. Here, the
construction of data-driven regularization is inspired by how discriminative
networks (also referred to as critics) are trained using modern Generative
Adversarial Network (GAN) architectures.

To train such an adversarial regularizer, we assume to have {xi}n1
i=1 ∈ X and

{yi}n2
i=1 ∈ Y , which are i.i.d. samples from the marginal distributions πx and

πy of ground-truth images and measurement data, respectively. It is important
to note here that the training samples are unpaired, i.e., yi does not necessarily
correspond to the noisy measurement of xi, unlike, for instance, a supervised
approach such as the learned primal-dual (LPD) method [3]. Additionally, we
assume that there exists a (potentially regularizing) pseudo-inverse A† : Y → X
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to the forward operator A and define the measure π† ∈ PX as π† := A†
#(πdata)

for πdata ∈ PY .
Then, the idea is to train a regularizer gθ, parametrized by a neural network,

to discriminate between the distributions πx and π†, the latter representing
the distribution of imperfect solutions A†yi. More concretely, we compute

g
θ̂

: X → R where θ̂ ∈ arg min
θ

L(θ), (15)

where L(θ) is chosen to be a Wasserstein-flavored loss functional [26]. In
particular, one minimizes

L(θ) := Ex∼πx [gθ(x)] − Ex∼π† [gθ(x)] + λEx∼π̃

[(
∥∇gθ(x)∥ − 1

)2
+

]
. (16)

Here, π̃ denotes the distribution of the random variable u = ε x+(1−ε)z, where
x ∼ πx, z ∼ π†, and ε is drawn uniformly at random from [0, 1]. The heuristic
behind this choice is that a regularizer trained this way will penalize noise
and artifacts generated by the pseudo-inverse (and contained in π†). The term
penalizing the gradient norm of gθ in (16) encourages gθ to be approximately
1-Lipschitz, which is required for the well-posedness of (16) and the stability
of the variational solution obtained using the regularizer resulting from (15).
When used as a regularizer, it will hence prevent these undesirable features
from occurring as a result of adversarial training. The resulting regularizer g

θ̂
is called an adversarial regularizer (AR). Note that in practical applications,
the measures πx, π† ∈ PX are replaced with their empirical counterparts given
by training data xi and A†yi, respectively.

Suppose, one computes a gradient step on the learned regularizer, given
by xη = x − η ∇xg

θ̂
(x), starting from x ∼ π†. Let πη

† be the distribution of
xη. Under appropriate regularity assumptions on the Wasserstein distance
W(πη

† , πx) (see [26, Theorem 1]), one can show that

d

dη
W(πη

† , πx)|η=0 = −Ex∼π†∥∇xg
θ̂
(x)∥2.

This ensures that by taking a small enough gradient step, one can reduce the
Wasserstein distance from the ground truth πx. This is a good indicator that
using g

θ̂
as a variational regularization term and consequently penalizing it

indeed introduces the highly desirable incentive to align the distribution of
regularized solutions with the distribution πx of ground truth samples. Further,
one can show that if the AR is Lipschitz-continuous1, then a minimizer of the
following variational problem exists

f(yδ, Ax) + λ
(

g
θ̂
(x) + ε∥x∥2

X

)
, (17)

1 1-Lipschitz continuity is approximately enforced by the gradient penalty term in (16),
which does not guarantee, however, that the (AR) is Lipschitz continuous. This property
can be enforced by choosing the right network architecture. Indeed, all convolutional neural
networks with RELU activations are Lipschitz continuous for some Lipschitz constant L,
which might be arbitrarily large.
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where the squared norm on x is needed to enforce coercivity.
Additionally, we can enforce (strong) convexity on gθ, leading to the adver-

sarial convex regularizer (ACR), to achieve stronger forms of convergence while
precluding discontinuities in the reconstruction operator. This necessitates a
suitable parameterization of the learned regularizer. One such option is given
by input convex neural networks for imposing convexity [6] on g

θ̂
.

Given a so-constructed (ACR) g
θ̂

that is convex in x, we then consider a
similar regularization functional of the form

g(x) = g
θ̂
(x) + ε ∥x∥2

X , (18)

where g
θ̂

: X → R is the trained (ACR) which we assume to be 1-Lipschitz
and convex in x. The corresponding variational regularization problem then
consists in minimizing

f(yδ, Ax) + λg(x), (19)

with respect to x ∈ X. In this setting, we get the following set of improved theo-
retical guarantees for the ACR, by following standard arguments in variational
calculus for the proofs.

Theorem 1 (Properties of Adversarial Convex Regularizer [29])

i. Existence and uniqueness: The functional in (19) is strongly convex in x
and has a unique minimizer x̂λ (y) for every y ∈ Y and λ > 0.

ii. Stability: The optimal solution x̂λ (y) is continuous in y.
iii. Convergence: For δ → 0 and λ(δ) → 0 such that δ

λ(δ) → 0, we have that

x̂λ

(
yδ

)
converges to the g-minimizing solution x† given in (7).

Theoretical guarantees notwithstanding, the numerical experiments in [29] (es-
pecially, for sparse-view CT reconstruction) indicate a lack of expressive power
of ACRs as compared to their nonconvex counterpart AR. This underscores the
need to develop techniques that achieve a better compromise between empirical
performance and theoretical certificates.

2.3.4 The Network Tikhonov (NETT) approach

Traditionally, regularizers are often chosen as sparsifying transforms with
respect to certain features. For instance, total variation (TV) is sparsifying for
piecewise constant functions. Similarly, neural networks are often trained in
an encoder-decoder (autoencoder) structure, where the encoder is trained to
represent the input signal in a low-dimensional space or to find a more efficient,
i.e., a sparse structure. The approach proposed as Network Tikhonov (NETT)
in [25] follows this paradigm to learn a regularizer. Here, a pretrained network
Eθ : X → Ξ is composed with a regularization functional g : Ξ → [0, +∞], such
that g ◦ Eθ : X → [0, +∞] takes small values for desired model parameters and
penalizes (by producing larger values for) model parameters with artifacts
or other unwanted structures. The deep neural network Eθ in this approach



Convergent regularization and linear plug-and-play denoisers 13

is allowed to be a rather general architecture, such as the above-mentioned
autoencoder. Once trained, the reconstruction is then given as the minimizer
of the variational objective

Jθ(x) := f(yδ, Ax) + λg
(
Eθ(x)

)
. (20)

Indeed, the NETT approach also provides a provably convergent regularization
method under certain analytic conditions on (20), such as weak lower semi-
continuity and coercivity of the regularizer g(Eθ(·)). The primary difference to
the ACR in (18), which achieves convergence in the strong topology of X by
enforcing convexity, is that the NETT idea achieves convergence in the weak
topology of X. The weak lower semi-continuity and coercivity of g(Eθ(·)) can
be achieved as follows. First, the usual ReLU activation function is replaced
by leaky ReLU defined with a small τ > 0 as

ℓReLUτ (s) := max(τs, s),

which tends to −∞ for s → −∞. In combination with the affine linear maps
(weight matrices) in Eθ, this yields a coercive and weakly lower semi-continuous
regularization function g ◦ Eθ for standard choices of g, such as weighted ℓp-
norms g(ξ) =

∑
i vi|ξ|p, with uniformly positive weights vi and p ≥ 1. Finally,

we note that strong convergence can be achieved by introducing the novel
concept of absolute Bregman distances and imposing stronger conditions on
the regularizer.

3 Regularization by Plug-and-play (PnP) denoising

Denoising is the simplest and arguably the most well-studied inverse problem
in imaging, with numerous algorithms developed over the past few decades,
particularly for removing additive white Gaussian noise from images. It is,
therefore, natural to ask if one can leverage off-the-shelf denoisers for solving
more complicated image recovery tasks with a non-trivial forward operator.
Venkatakrishnan et al. [45] pioneered the idea of using denoisers within proximal
splitting algorithms (e.g., the alternating directions method of multipliers
(ADMM) algorithm) in a plug-and-play (PnP) fashion, and the resulting class
of algorithms came to be known as the PnP denoising approach. To see the
motivation behind using denoisers in place of proximal operators, let us recall
the definition of the proximal operator with respect to a (potentially non-
smooth) convex functional g : X → R ∪ {+∞} and a step-size τ > 0:

proxτ g(x) = arg min
u

1
2∥x − u∥2 + τ g(u). (21)

As indicated by (21), evaluating the proximal operator amounts to denoising
a noisy image x using the Bayesian maximum a-posteriori probability (MAP)
estimation framework with a Gibbs prior ∝ exp (−τ g(u)). This denoising
interpretation of proximal operators underlies the foundation of PnP approaches,
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which have been shown to produce excellent reconstruction results for a wide
range of imaging inverse problems. A classic and widely popular example of
PnP denoising would be to consider it in conjunction with forward-backward
splitting (FBS), leading to the following iterative reconstruction algorithm:

xk+1 = Dσ (xk − ηk ∇f(xk)) . (22)

Here, f denotes the data fidelity loss for the underlying inverse problem, ηk > 0
is the step-size at iteration k, and Dσ is a denoiser that eliminates Gaussian
noise of standard deviation σ from its input.

Besides the PnP denoising framework within proximal methods, wherein
a denoiser implicitly acts as a regularizer, Romano et al. [37] proposed an
alternative approach to explicitly construct a regularizer as

g(x) = 1
2x⊤ (x − Dσ(x)) , (23)

while utilizing a denoiser Dσ(x). One can then seek to minimize the energy
functional f(x) + λ g(x), where g is as defined in (23), leading to fixed-point
iterative schemes known as the regularization-by-denoising (RED) algorithms.
Nevertheless, it was shown subsequently by Schniter et al. [34] that the energy
minimization interpretation of the RED algorithms is valid only when (i)
the denoiser is locally homogeneous, i.e., Dσ ((1 + ε)x) = (1 + ε)Dσ(x) holds
for all x with sufficiently small ε, and (ii) the Jacobian of Dσ is symmetric.
These conditions are generally not satisfied by generic denoisers, thereby
invalidating the energy minimization-based interpretation of RED. Instead, the
authors of [34] developed a new framework called score-matching to analyze
the convergence of RED algorithms.

Notwithstanding their empirical success, PnP denoising algorithms such
as (22) does not immediately inherit the convergence properties of the corre-
sponding optimization scheme (in this specific instance, FBS). Studying the
convergence of PnP denoising has received a significant amount of attention
in the mathematical imaging community in recent years. Arguably, the most
natural form of convergence for PnP algorithms of the form (22) is the stability
of the iterations, i.e., to ascertain whether the sequence of iterates xk generated
by a PnP algorithm converges. Such convergence guarantees are typically de-
rived from fixed point theorems, which require showing that the PnP iterations
are contractive maps [11, 40]. For instance, [40] established the fixed-point
convergence of PnP-ADMM (i.e., PnP with the alternating direction method
of multipliers algorithm) under the assumption of Lipschitz continuity of the
operator (Dσ − id). The specific result is stated in Theorem 2.

Theorem 2 (Fixed-point convergence of PnP-ADMM [40])
Consider the PnP-ADMM algorithm, given by

xk+ 1
2

= proxτ f (zk) , xk+1 = Dσ

(
2xk+ 1

2
− zk

)
, and

zk+1 = zk + xk+1 − xk+ 1
2
, (24)
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where the data-fidelity loss f is assumed to be µ-strongly convex. One can
equivalently express (24) as the fixed-point iteration zk+1 = T (zk), where

T = 1
2 id +1

2 (2Dσ − id)
(
2 proxτ f − id

)
. (25)

Suppose, the denoiser satisfies

∥(Dσ − id) (u) − (Dσ − id) (v)∥2 ≤ ε ∥u − v∥2 , (26)

for all u, v ∈ X and some ε > 0, and the strong convexity parameter µ is
such that ε

(1 + ε − 2ε2) µ
< τ holds, the operator T is contractive and the

PnP-ADMM algorithm is fixed-point convergent. That is, (xk, zk) → (x∞, z∞),
where (x∞, z∞) satisfy

x∞ = proxτ f (z∞) and x∞ = Dσ (2x∞ − z∞) . (27)

As noted in [40], fixed-point convergence of PnP-ADMM follows from mono-
tone operator theory if (2Dσ − id) is non-expansive, but (26) imposes a less
restrictive condition on the denoiser.

While fixed-point convergence ensures that the PnP iterations are stable, the
specific fixed point to which they converge does not automatically minimize
a variational energy function. To bridge the gap between classical variational
approaches and PnP methods, it is important to derive conditions under which
the limit point of PnP iterations can be characterized as the minimizer (or, at
least a stationary point) of some regularized variational objective (which, of
course, depends on the denoiser). This type of convergence is referred to as
objective convergence and is stronger than fixed-point convergence.

Objective convergence of PnP with classical (pseudo) linear denoisers (e.g.,
non-local means denoiser) has been established in [31]. Hurault et al. [21]
showed that PnP with a denoiser constructed as a gradient field (referred
to as gradient-step (GS) denoisers) converges to the stationary point of a
(possibly non-convex) variational objective (c.f. Theorem 3). The construction
of GS denoisers is motivated by Tweedie’s identity: the optimal minimum
mean-squared error (MMSE) Gaussian denoiser is given by

D∗
σ(x) := E [x0|x = x] = x + σ2 ∇ log pσ(x). (28)

Here, x = x0 + σ z, where x ∼ N (0, id), is the Gaussian noise (with variance
σ2) corrupted version of the clean image x0 ∈ X ⊆ Rd and

pσ(x) = 1
(2πσ2) d

2

∫
exp

(
−∥x − x0∥2

2
2σ2

)
p(x0) dx0. (29)

Indeed, the optimal Gaussian denoiser is of the form D∗
σ(x) = x − ∇ g∗

σ(x),
where g∗

σ is the negative log of the smoothed distribution pσ defined in (29),
which has a structure identical to that of a GS denoiser.
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Theorem 3 (Objective convergence of PnP iterations with gradient-
step (GS) denoisers [21])
Suppose, the denoiser is constructed as a gradient-step (GS) denoiser, i.e.,

Dσ = id −∇gσ, where gσ is proper, lower semi-continuous, and differentiable
with an L-Lipschitz gradient. The PnP algorithm proposed in [21] is given by

xk+1 = proxτ f (xk − τ λ ∇gσ(xk))
= proxτ f ◦ (τλ Dσ + (1 − τλ id)) (xk), (30)

where f : X → R ∪ {+∞} denotes data-fidelity and is assumed to be convex
and lower semi-continuous. Then, the following guarantees hold for τ < 1

λ L :

1. The sequence F (xk), where F = f + λ gσ, is non-increasing and convergent.
2. ∥xk+1 − xk∥2 → 0, which indicates that iterations are stable, in the sense

that they do not diverge if one iterates indefinitely.
3. All limit points of {xk} are stationary points of F (x).

Notably, the PnP iteration defined by (30) is exactly equivalent to proximal
gradient descent on f + λ gσ, with a potentially non-convex gσ.

While objective convergence ensures a one-to-one connection between PnP
iterates with the minimization of a variational objective, it does not provide
any guarantees about the regularizing properties of the solution that the
iterates converge to. In the same spirit as classical regularization theory, it is
therefore desirable to be able to control the implicit regularization effected by
the denoiser in PnP algorithms and analyze the asymptotic behavior of the
PnP reconstruction as the noise level and the regularization strength tend to
vanish. More precisely, assuming that the PnP iterations converge to a solution
x̂

(
yδ, σ, λ

)
, where σ is a parameter associated with the denoiser and λ is an

explicit regularization penalty, one would like to obtain appropriate selection
rules for σ and/or λ such that x̂

(
yδ, σ, λ

)
exhibits convergence akin to (7)

in the limit as δ → 0. To the best of our knowledge, some progress in this
direction was first made in [14], and the precise convergence result is stated in
Theorem 4.

Theorem 4 (Convergent plug-and-play (PnP) regularization [14])
Consider the PnP-FBS iterates of the form

xδ
λ,k+1 = Dλ

(
xδ

λ,k − η A∗ (
Axδ

λ,k − yδ
))

, (31)

where Dλ is a denoiser with a tuneable regularization parameter λ. Let PnP
(
λ, yδ

)
be the fixed point of the PnP iteration (31). For any y ∈ range(A) and any
sequence δk > 0 of noise levels converging to 0, there exists a sequence λk of reg-
ularization parameters converging to 0 such that for all yk with ∥yk −y0∥2 ≤ δk,
the following hold under appropriate assumptions on the denoiser (see Definition
3.1 in [14] for details):

1. PnP
(
λ, yδ

)
is continuous in yδ for any λ > 0;

2. The sequence (PnP (λk, yk))k∈N has a weakly convergent subsequence; and
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3. The limit of every weakly convergent subsequence of (PnP (λk, yk))k∈N is a
solution of the operator equation y0 = Ax.

The result in [14], although the first of its kind, makes fairly restrictive assump-
tions on the denoiser. In particular, the denoiser needs to be contractive, which
is not satisfied by most practical denoisers, especially denoisers modeled using
deep CNNs. This led us to pose the following question: are PnP approaches with
more general and expressive denoisers also convergent regularization methods?
This question is perhaps more tractable if one can associate the PnP solution
(after convergence) with the minimizer of an underlying variational objective.
We, therefore, first consider gradient-step denoisers, for which it is possible to
establish such a connection (see Theorem 3). Treating λ in (30) as an explicit
regularization parameter while using a fixed, pre-trained denoiser, one can
interpret the converged PnP solution as a minimizer of f + λ gσ, where λ is
varied depending on the noise level δ in the measurement data and σ is kept
fixed. The numerical results for image deblurring in Figure 2 seem to indicate
that gradient-step PnP is indeed a convergent regularization scheme, while the
classical theory only guarantees stability akin to what is shown in [26] subject
to gσ being coercive and bounded below. In addition, the role of σ as an implicit
regularization parameter is not exploited, and it is kept unchanged regardless
of the noise level in the measurement. This, in part, is due to the fact that
the behavior of gσ w.r.t. σ is non-trivial to characterize in a precise manner,
leading to difficulties in tuning σ based on δ. In order to rigorously establish
convergence, together with developing a principled approach to control the
regularization strength arising from the denoiser, we consider PnP with linear
denoisers in the next section.

4 Controlling the regularization strength in PnP

One fundamental question that arises when applying learned denoisers for
solving inverse problems using PnP concerns itself with how to adjust the
regularization strength that is applied. Indeed, learned denoisers are typically
trained at a fixed noise level, whereas their practical application to inverse
problems in a PnP framework and the theoretical notion of convergent reg-
ularization both require one to have certain control over the regularization
strength.

An approach that has been shown to be beneficial in practice is the denoiser
scaling approach [47]: given a denoiser Dσ (designed for denoising at a given
noise level σ), we introduce an extra scaling parameter α > 0, and define the
scaled denoisers {Dσ,α}α>0 as

Dσ,α(x) = 1
α

Dσ(αx). (32)

This choice of scaling is motivated by the fact that if J : X → R ∪ {∞} is
1-homogeneous (i.e., J(τ u) = τJ(u), for τ > 0) and its proximal operator is
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(a) noise level vs. distance from the gσ-minimizing solution x†.

(b) x̂ (yσ0 ) , σ0 = 10% (c) x̂ (yσ0 ) , σ0 = 8% (d) x̂ (yσ0 ) , σ0 = 5%

(e) x̂ (yσ0 ) , σ0 = 2% (f) x̂ (yσ0 ) , σ0 = 1% (g) x̂ (yσ0 ) , σ0 = 0.5%

(h) x̂ (yσ0 ) , σ0 = 0.1% (i) x†, σ0 = 0 (j) ground-truth

Fig. 2: PnP gradient-step DRUNet denoiser as a convergent regularization method for image
deblurring. The PnP scheme for reconstruction minimizes variational energy of the form
f + λ gσ , where f is the fidelity and gσ is the regularizer induced by a pre-trained denoiser.
The input blurry image is given by yσ0 = Ax + w, where A is a Gaussian blur kernel and w
is additive Gaussian noise with variance σ2

0 . The images from (b) to (i) are the deblurred
images x̂ (yσ0 ) corresponding to the noise level σ0 (expressed as the % of maximum pixel
value 255.0 in the ground truth). The regularization parameter is selected as λ = c σ0 + ε,
where the constant c = 0.04 and ε = 10−4.



Convergent regularization and linear plug-and-play denoisers 19

well-defined, we have

proxτJ(x) = arg min
y

1
2∥x − y∥2 + τJ(y)

= arg min
y

τ2

2

∥∥∥x

τ
− y

τ

∥∥∥2
+ τJ(y)

= τ arg min
u

1
2

∥∥∥x

τ
− u

∥∥∥2
+ J(u)

= τ proxJ

(x

τ

)
.

In other words, if Dσ = proxJ , then Dσ,α = proxJ/α. Let us note that the
choice of this particular scaling, while natural (norms and seminorms are
1-homogeneous, for example), is somewhat arbitrary. Indeed, suppose that J
is instead c-homogeneous for some c > 0, i.e., J(δ u) = δcJ(u) for any u and
δ > 0. We have, with δ > 0 arbitrary,

proxτJ(x) = arg min
y

1
2∥x − y∥2 + τJ(y)

= arg min
y

δ2

2

∥∥∥x

δ
− y

δ

∥∥∥2
+ τJ(y)

= δ arg min
u

1
2

∥∥∥x

δ
− u

∥∥∥2
+ τ

δ2 J(δu)

= δ arg min
u

1
2

∥∥∥x

δ
− u

∥∥∥2
+ τ

δ2−c
J(u).

Choosing δ = τ
1

2−c , we find that

proxτJ(x) = τ
1

2−c proxJ(τ
1

c−2 x), (33)

which agrees with the result for 1-homogeneous functionals and generalizes
it, except for 2-homogeneous functionals where the above derivation does not
work. In fact, this leads nicely into a setting where no form of denoiser scaling
as in Equation (33) can possibly be used to control the regularization strength
to give a convergent regularization: for linear denoisers the multiplicative factor
inside the denoiser can be pulled out and canceled against the factor outside
of it.

4.1 Controlling the regularization strength of a linear denoiser

Let us consider the setting in which we have a linear denoiser Dσ : X → X.
If we are to interpret it as a proximal operator of some underlying functional,
we must assume that it is a symmetric, positive semi-definite (p.s.d.) operator,
and if we assume that the underlying functional is convex as well, then Dσ

must be non-expansive in addition. These properties are direct consequences
of the characterization of proximal operators given in [28] and generalized (to
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potentially non-convex functionals) in [18]. Let us restrict to the case where
Dσ is non-expansive, bypassing the potential difficulties of non-convexity of the
underlying variational problem. In fact, we will assume that Dσ is contractive,
i.e. ∥Dσ∥ < 1, which as we will see later corresponds to assuming that the
underlying regularization functional is coercive. Furthermore, we will assume
that Dσ is bounded from below, i.e. ∥Dσ(x)∥ ≥ c∥x∥ for some c > 0, so that
D−1

σ exists and is a bounded operator.
Remark 1 In practice, the assumption of symmetry can be relaxed somewhat
by taking a different perspective: in [17] it is shown in finite dimensions that
any denoiser which is similar to a symmetric p.s.d. matrix is admissible in PnP
applications. Indeed, in this case we can find a modified inner product, with
respect to which the denoiser is a proximal operator.
Let us study the characterization of proximal operators in more detail for
the linear denoiser Dσ. The goal is to understand the underlying functional
J : X → R such that Dσ = proxJ . Note first that it is immediate from the
definition (Equation (21)) that we can only hope to recover J up to an additive
constant. We have

Dσ = proxJ = (id +∂J)−1 = (∂[J + ∥ · ∥2])−1,

with ∂ being the subdifferential. On the other hand, since Dσ is linear, it is
the gradient of the convex quadratic functional ϕ : X → R given by ϕ(x) =
⟨x, Dσx⟩/2, i.e. Dσ = ∇ϕ. Using a standard result from convex analysis, we
know that (∇ϕ)−1 = ∇ϕ∗, where ϕ∗ is the convex conjugate of ϕ, and

∇ϕ∗ = ∂[J + 1
2∥ · ∥2].

Hence, up to an irrelevant additive constant, we find that the underlying
regularization functional J corresponding to Dσ is given by

J(x) = ϕ∗(x) − 1
2∥x∥2 = 1

2 ⟨x, (D−1
σ − id)x⟩. (34)

The most common way of controlling the regularization strength, when we
have access to the underlying regularization functional J , is to simply scale
it: introduce a parameter τ > 0 and consider proxτJ . If we apply this to
Equation (34), we obtain

τJ(x) = 1
2 ⟨x, ([τD−1

σ − (τ − 1) id] − id)x⟩,

which suggests, by following the above reasoning in reverse, that

proxτJ = (τD−1
σ − (τ − 1) id)−1 = hτ (Dσ). (35)

Here hτ : R → R, given by hτ (λ) = λ/(τ − λ(τ − 1)) is applied to Dσ using
the functional calculus. The takeaway message of the preceding derivation is
that we can perform a spectral filtering operation on the linear denoiser Dσ

to control its regularization strength. In fact, more general filter functions hτ

than the one seen here can be used, as we will see in what follows.
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Remark 2 It is worth contrasting the spectral filtering approach proposed here
with well-established spectral filtering approaches to regularization of linear,
ill-posed, inverse problems [15]: whereas the traditional approaches operate
on the forward operator to enact a regularization effect, we operate on the
denoiser (agnostic about the forward operator to which the denoiser will be
applied) to control its regularization strength.

To get a better understanding of what the spectral filtering operation does to a
denoiser, consider Figure 3. This will help us get an idea of what we should ask
of generalized filter functions, i.e. filter functions that do not just implement a
scaling of the underlying regularization functional.
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Fig. 3: The effect of filtering the denoiser as in (35). In accordance with intuition, the
spectrum is flattened as τ → 0: as the regularization strength vanishes, the effect of the
denoiser should vanish too.

4.2 Convergent regularization through generalized spectral filtering of linear
denoisers

In the previous section, we saw that there is a way in which we can spectrally
filter a linear denoiser to effectively scale the underlying regularization func-
tional. Now, we will generalize the conditions on the spectral filter and show
that this spectral filtering of linear denoisers allows us to obtain a convergent
regularization of linear, ill-posed, inverse problems.
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We saw in Equation (34) that a linear denoiser is related to an underlying
regularization functional J as follows: we have Dσ = proxJ , where

J(x) = 1
2 ⟨x, (D−1

σ − id)x⟩.

Furthermore, we saw the effect of scaling the regularization functional on the
corresponding proximal operator. We can generalize this idea and look at

Jτ (x) := 1
2 ⟨x, (hτ (Dσ)−1 − id)x⟩,

where {hτ : R → R}τ∈(0,∞) is a family of spectral filters that we can apply
to Dσ using the continuous functional calculus. Let us now derive conditions
on the spectral filters hτ such that this gives a convergent regularization. For
one, since we are assuming that Dσ is bounded from below and contractive,
we have that spec(Dσ) ⊂ (0, 1), and the same considerations that led to these
assumptions then lead to us asking that hτ (spec(Dσ)) ⊂ (0, 1) for each τ > 0.

Since we would like to think of Jτ as somewhat similar to τJ , we ask the
question whether the limit

J∗(x) := lim
τ→0

1
τ

Jτ (x) = lim
τ→0

1
2τ

⟨x, hτ (Dσ)−1x⟩ − 1
2τ

∥x∥2

exists and is sufficiently well-behaved. Indeed, if this limit is well-defined, a
natural result to aim for would be that we have convergence to a J∗-minimizing
least-squares solution to the inverse problem with appropriate choices of τ → 0
as δ → 0.

Remark 3 In Theorem 5, as above, we will assume that the denoiser is contrac-
tive, which by (34) implies that the corresponding regularization functional
is coercive. This may be relaxed, by requiring that the kernel of the forward
operator is compatible with the denoiser in the sense that the objective function
in (36) is coercive.

Theorem 5 Suppose that Dσ : X → X is a bounded, linear, self-adjoint
operator, which is interpreted as a denoiser. Furthermore, assume that Dσ

is positive definite, bounded from below, and contractive (so that spec(Dσ) ⊂
(0, 1)). Suppose in addition that we have a bounded, linear forward operator
A : X → Y (assuming w.l.o.g. that ∥A∥ = 1), and that {hτ : R → R}τ∈(0,∞) is
a collection of continuous scalar functions satisfying

A.1
hτ (spec(Dσ)) ⊂ (0, 1) for any τ > 0,

A.2

rτ (λ) := 1 − hτ (λ)
τhτ (λ) converges uniformly for λ ∈ spec(Dσ) as τ → 0,

with limit r∗ and rate ∥rτ − r∗∥L∞(spec(Dσ)) = o(τ),



Convergent regularization and linear plug-and-play denoisers 23

A.3
c := inf

τ>0,λ∈spec(Dσ)
rτ (λ) > 0, c := sup

τ>0,λ∈spec(Dσ)
rτ (λ) < ∞.

In this setting, let us define (using the continuous functional calculus to apply
scalar functions to Dσ)

Jτ (x) := 1
2 ⟨x, (hτ (Dσ)−1 − id)x⟩ = τ

2 ⟨x, rτ (Dσ)x⟩.

We can compute the solution to the variational problem

x̂ = arg min
x∈X

1
2∥Ax − y∥2 + Jτ (x) (36)

using PnP-FBS:

x̂ = lim
k→∞

xk, where xk+1 = hτ (Dσ)(xk − A∗(Axk − y)). (37)

By A.2 we can define J∗(x) = limτ→0 Jτ (x)/τ . Now, we obtain a convergent
regularization when the regularization parameter τ δ is chosen appropriately:
suppose that τ δ ∼ δ. Assume that we have an underlying image x∗ ∈ X, clean
measurements y = Ax∗, {yδ}δ>0 is a sequence in Y satisfying ∥yδ − y∥ ≤ δ,
and

x̂(yδ, τ δ) = arg min
x∈X

1
2∥Ax − yδ∥2 + Jτδ (x).

Then x̂(yδ, τ δ) → x†, where

x† = arg min
x∈X s.t. A∗(Ax−y)=0

J∗(x)

is the J∗-minimizing least squares solution to the inverse problem Ax = y.

Proof First note that under the assumptions of the theorem, PnP-FBS as
described in (37) is a contractive fixed-point iteration (so that it has a unique
fixed point to which it converges) for any τ and y, with fixed points satisfying
the optimality condition of the variational problem in (36).

By A.3, we can define J(x) = infτ Jτ (x)/τ and J(x) = supτ Jτ (x)/τ , so
that

c

2∥x∥2 ≤ J(x) ≤ Jτ (x)
τ

≤ J(x) ≤ c

2∥x∥2. (38)

Taking limits, this also gives us that

c

2∥x∥2 ≤ J∗(x) ≤ c

2∥x∥2.

The above bounds tell us that the J∗-minimizing least squares solution to the
inverse problem is unique, since it is defined by the minimization of a strongly
convex functional on a closed linear subspace of X.
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We have clean measurements y = Ax∗, a set of yδ such that ∥y − yδ∥ ≤ δ
and a parameter choice rule δ 7→ τ δ satisfying τ δ ∼ δ as τ → 0. We are
considering the corresponding set of reconstructions

x̂(yδ, τ δ) = arg min
x∈X

1
2∥Ax − yδ∥2 + Jτδ (x).

By the remarks above, we can compute these reconstructions using (37). For
the sake of the proof, let us also define the variational reconstruction operators
with a static regularization functional J∗, as follows

x̂static(y, τ) := arg min
x∈X

1
2∥Ax − y∥2 + τJ∗(x). (39)

This static regularization approach, with the parameter choice that we are
using, is a convergent regularization by the existing theory (this is guaranteed,
for example, by the general result in [41, Proposition 3.32]): x̂static(yδ, τ δ) →
x† with x† the J∗-minimizing least squares solution to the inverse problem.
Furthermore, the triangle inequality gives us that

∥x̂(yδ, τ δ) − x†∥ ≤ ∥x̂(yδ, τ δ) − x̂static(yδ, τ δ)∥ + ∥xstatic(yδ, τ δ) − x†∥, (40)

so it suffices to show that

∥x̂(yδ, τ δ) − x̂static(yδ, τ δ)∥ → 0 as δ → 0.

We can write
x̂(y, τ) = [A∗A + τrτ (Dσ)]−1A∗y

and
x̂static(y, τ) = [A∗A + τr∗(Dσ)]−1A∗y,

so we just need to show that ∥M−1
τ − M−1

τ,static∥ → 0 as τ → 0 (since τ δ ∼ δ),
where Mτ = A∗A + τrτ (D) and Mτ,static = A∗A + τr∗(D). We have

M−1
τ − M−1

τ,static = [Mτ,static + τ(rτ (Dσ) − r∗(Dσ))]−1 − M−1
τ,static

=
[
[id +τM−1

τ,static(rτ (Dσ) − r∗(Dσ))]−1 − id
]
M−1

τ,static. (41)

We will expand the inner matrix inversion using a Neumann series. Note first
(by A.3) that Mτ,static is bounded from below: ∥Mτ x∥ ≥ cτ∥x∥. As a result,
∥M−1

τ,static∥ ≤ 1/(cτ) and we can estimate

∥τM−1
τ,static(rτ (Dσ)−r∗(Dσ))∥ ≤ τ

1
cτ

∥rτ (Dσ)−r∗(Dσ)∥ =
∥rτ − r∗∥L∞(spec(Dσ))

c
.

(42)
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Since A.2 tells us that ∥rτ − r∗∥L∞(spec(Dσ)) → 0 as τ → 0, this must be
smaller than 1 for sufficiently small τ , which is a sufficient condition for
absolute convergence of the Neumann series. Using this and (41), we see that

M−1
τ − M−1

τ,static =
[ ∞∑

n=0
[−τM−1

τ,static(rτ (Dσ) − r∗(Dσ)]n − id
]
M−1

τ,static

=
[ ∞∑

n=1
[−τMτ,static(rτ (Dσ) − r∗(Dσ))]n

]
M−1

τ,static.

Finally, we can simply estimate its norm from this as follows, using (42) and
the fact ∥M−1

τ,static∥ ≤ 1/(cτ):

∥M−1
τ − M−1

τ,static∥ ≤
∞∑

n=1

(∥rτ − r∗∥L∞(spec(Dσ))

c

)n 1
cτ

=
∥rτ − r∗∥L∞(spec(Dσ))

c

1
1 − ∥rτ −r∗∥L∞(spec(Dσ))

c

1
cτ

= 1
τ

∥rτ − r∗∥L∞(spec(Dσ))

c2 − c∥rτ − r∗∥L∞(spec(Dσ))
.

Since we have assumed that ∥rτ − r∗∥L∞(spec(Dσ)) = o(τ) as τ → 0, we find
by the above reasoning that ∥x̂(yδ, τ δ) − x̂static(yδ, τ δ)∥ → 0. Recalling the
inequality in (40) lets us conclude that the spectral filtering approach is a
convergent regularization.

Example 1 Consider the case previously considered in (34) and (35), corre-
sponding to hτ (λ) = λ/(τ(1 − λ) + λ). We have

rτ (λ) = 1 − hτ (λ)
τhτ (λ) = 1 − λ

λ
.

In particular, the assumptions A.3, A.2 and A.1 are trivially satisfied: we
have hτ (λ) < λ for λ > 0, r∗ = rτ for all τ > 0 and

inf
τ>0,λ∈spec(Dσ)

rτ (λ) = 1 − λmax(Dσ)
λmax(Dσ) > 0

and

sup
τ>0,λ∈spec(Dσ)

rτ (λ) = 1 − λmin(Dσ)
λmin(Dσ) < ∞.

This should come as no surprise, since by the previous discussion, this choice of
spectral filtering simply corresponds to the static regularization approach used
in the proof of Theorem 5, for which classical theory establishes its convergence
properties.
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4.3 Experiments

In this section, we will demonstrate the use of the spectral filtering approach
to control the regularization strength of a learned denoiser, when applied to an
inverse problem using PnP-FBS, showing that it in fact gives rise to a practically
convergent regularization method. Since the spectral filtering approach was
developed for linear denoisers, we first need to decide on a reasonable design
for a linear learnable denoiser.

In this work, we will modify the U-net architecture [38], which continues to
be used with great success in image-to-image tasks, and combines a downscaling
and upscaling path (as in an autoencoder) with skip connections that connect
the corresponding scales before and after the bottleneck. The key insight for
us is that the U-net architecture is symmetric, in the following sense: if the
downscaling and upscaling operations are linear and each other’s transposes,
and the activation functions and biases are omitted, the U-net is linear and its
transpose is a U-net of the same shape (which can be thought of as running
the original U-net in reverse). In particular, it is straightforward to see that we
can obtain a symmetric linear U-net in this way by tying weights between the
downscaling and upscaling paths. Alternatively, and perhaps more simply, we
can take the average of a linear U-net and its transpose to get a symmetric linear
denoiser. This is the approach that we will take in the experiments considered
in this section, since we can leverage the power of JAX [9] to do so: given a
linear U-net, we can efficiently compute its vector-Jacobian products to get its
transpose. Figure 4 shows a comparison of the denoising performance (in the
same setting as the one we will consider for the application to inverse problems
below) of such a linear U-net with a comparable non-linear U-net. By this, we
mean that the networks have the same sizes and the same number of trainable
parameters. While the non-linear U-net allows for better reconstructions, most
notably in terms of sharpness, both denoisers remove a significant part of the
noise in the noisy images. In what follows, we will use the linear U-net Dσ,l
and simply call it Dσ.

x∗ y Dσ,nl(y) Dσ,l(y)

Fig. 4: Comparing the denoising performance of a non-linear U-net (Dσ,nl) with a linear,
symmetric U-net (Dσ,l) based on the same architecture. Here x∗ is a ground truth image and
y is the same image, corrupted by Gaussian noise. These images are generated in the same
way as the training data was generated. In contrast to Dσ,nl, Dσ,l struggles to reconstruct
sharp edges as it does not contain any non-linearity. On the other hand, both denoisers
significantly improve the signal-to-noise ratio: y has a PSNR of 24.3 dB, Dσ,nl(y) has a
PSNR of 34.0 dB and Dσ,l(y) has a PSNR of 27.8 dB.
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The experiment that we will consider is concerned with the inverse problem
of image reconstruction in computed tomography (CT). We will consider images
of size 64×64, consisting of randomly generated ellipse phantoms as in Figure 6,
and simulate CT measurements (sinograms) using the ASTRA toolbox [1,2]
with a parallel beam geometry with 150 equispaced views. A linear U-net
is trained as a denoiser on ellipse phantoms corrupted with Gaussian white
noise, after which we apply the denoiser in a PnP-FBS manner: denoting the
forward operator, which maps images u to (clean) sinograms y by A, the noisy
measurements yδ and the trained denoiser by Dσ, we iterate

xk+1 = hτ (Dσ)(xk − ηA∗(Axk − yδ)), x̂(yδ, τ) = lim
k→∞

xk

where η is a step size, satisfying η ≤ 2/∥A∥2, so that the limit is well-defined.
Here, we simply use the spectral filters hτ corresponding to scaling the under-
lying regularization functional as seen in Equation (35).

We will consider a sequence of noisy measurements {yδ}δ>0 such that
∥yδ − y∥ ≤ δ and a corresponding step size τ δ ∝ δ, satisfying the conditions
of Theorem 5. In Figure 5 and Figure 6 we show that the spectral filtering
approach indeed leads to a practically convergent regularization, as predicted
by Theorem 5.

10−5 10−4 10−3 10−2 10−1

δ

10−4

10−3

10−2

‖x̂
(y
δ
,τ
δ
)
−
x
† ‖

Convergent regularisation by spectral filtering

Fig. 5: Applying the spectral filtering approach, we observe convergent regularization in
practice. Here x† is the J∗-minimizing solution to the noiseless least-squares problem as in
Theorem 5.
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x∗ x†

x̂(yδ, τ δ) FBP(yδ)

x̂(yδ, τ δ) FBP(yδ)

x̂(yδ, τ δ) FBP(yδ)

In
cr
ea
si
n
g
δ

Fig. 6: Applying the spectral filtering approach, we observe convergent regularization in
practice. We show a selection of snapshots corresponding to the plot in Figure 5. Note that x∗

(the underlying ground truth) is distinct from x† since the forward operator has a non-trivial
kernel.
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5 Conclusions

The question if a reconstruction algorithm provides a convergent regularization
has been long studied in inverse problems, as it provides more than just the
knowledge that a solution can be computed at a certain noise level. It tells us
that stable solutions exist for all noise realizations and even more importantly
that in the limit case, when noise vanishes, we obtain a solution of the underlying
operator equation. In other words, we can guarantee mathematically that
obtained solutions are indeed solutions to the inverse problem.

This is in contrast to some novel data-driven approaches where we may
only guarantee that obtained solutions are minimizers of the empirical loss,
given suitable training data. Consequently, the concept of convergent data-
driven reconstructions has gained considerable interest very recently, see for
instance [30]. Here, PnP approaches take a special role due to their straightfor-
ward connection to convex optimization [23] and the possibility to incorporate
learned denoisers given by non-linear neural networks. But despite considerable
advances in establishing convergence notions, i.e., fixed-point and objective
convergence, the question of convergent regularization is still open for general
non-linear denoisers.

In this work, we presented a step forward for learned linear denoisers
using the novel concept of spectral filtering of the denoiser. The presented
approach allows to establish a provably convergent regularization in the PnP
framework. Additionally, this convergence is demonstrated numerically on the
inverse problem of CT image reconstruction. As established in Theorem 5,
there is some freedom in the choice of filters to apply to the denoiser. In future
work, this choice could be studied in more detail. In this direction, it is of
particular interest to choose spectral filters that are not too computationally
costly to evaluate but still give a way to tune the regularization strength of the
denoiser. Indeed, in the present implementation of the method, after training,
the denoiser is instantiated as a matrix, the eigen-decomposition of which is
computed to apply the spectral filtering. By considering spectral filters given
by polynomials, for example, we would circumvent the need to instantiate
the denoiser as a matrix and compute a full eigen-decomposition. Besides
this, it would be of great interest to study whether there is any reasonable
generalization of the denoiser filtering approach to the setting in which the
denoiser is non-linear.

In fact, we have observed similar convergence behavior numerically even
when using a non-linear denoiser in the PnP gradient-step framework (see
Figure 2), suggesting a promising direction for proving that PnP with realistic
assumptions on the denoiser can give rise to convergent regularization. The
gradient-step framework is, however, just one way of controlling the regular-
ization strength of the learned denoiser. In particular, it relies on flipping the
usual splitting of the variational objective and, as a result, requires repeated
evaluation of the proximal operator of the data term. This may be very compu-
tationally costly if the forward operator is expensive to evaluate. As a result,
it is still of great interest to study other ways of controlling the regularization



30 Andreas Hauptmann et al.

strength of a realistic learned denoiser in PnP that will result in provably
convergent regularization.
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